Level: Undergraduate (UG) | Postgraduate (PG) | Competitive Exams (CSIR-NET, GATE, IIT-JAM, NEET)
- Understand structural, catalytic, and signaling roles of metal ions
- Correlate coordination chemistry with biofunction
- Identify deficiency diseases and therapeutic roles
- Link metal ions to enzyme active sites and electron transfer
Metal ions are indispensable in biological systems, acting as cofactors, structural components, signaling molecules, and catalysts in enzymatic reactions. Approximately one-third of all proteins require metal ions for proper function. These ions include both essential trace elements (e.g., Fe, Zn, Cu, Mn) and alkali/alkaline earth metals (e.g., Na⁺, K⁺, Mg²⁺, Ca²⁺).
Classification of Metal Ions in Biology
| Category | Examples | Primary Roles |
|---|---|---|
| Alkali Metals | Na⁺, K⁺ | Membrane potential, nerve impulse transmission, osmotic balance |
| Alkaline Earth Metals | Mg²⁺, Ca²⁺ | Enzyme activation, muscle contraction, second messengers |
| Transition Metals | Fe, Cu, Zn, Mn, Co, Mo | Redox reactions, oxygen transport, enzyme catalysis |
1. Sodium (Na⁺) and Potassium (K⁺)
1.1 Biological Role
- Electrolyte balance: Maintain osmotic pressure, fluid balance
- Nerve impulse transmission: Action potential via Na⁺/K⁺ gradient
- Muscle contraction: Depolarization triggers Ca²⁺ release
- Nutrient uptake: Na⁺-glucose symport, Na⁺/K⁺-ATPase pump
1.2 Na⁺/K⁺-ATPase (Sodium-Potassium Pump)
Structure: α₂β₂ tetramer; α-subunit has 10 TM helices, ATP & ouabain binding sites
Mechanism (Post-Albers Cycle):
- E1 (open cytosol): 3 Na⁺ bind → ATP → phospho-E1 → E2-P (open extracellular)
- 2 K⁺ bind → dephosphorylation → E1 + 2 K⁺ released inside
Stoichiometry: 3 Na⁺ out : 2 K⁺ in : 1 ATP hydrolyzed
1.3 Deficiency & Excess
| Ion | Deficiency | Excess |
|---|---|---|
| Na⁺ | Hyponatremia, muscle cramps | Hypertension, edema |
| K⁺ | Hypokalemia, arrhythmia | Hyperkalemia, cardiac arrest |
2. Calcium (Ca²⁺)
2.1 Structural Role
- Bone & teeth: Hydroxyapatite [Ca₁₀(PO₄)₆(OH)₂]
- Exoskeletons (crustaceans): CaCO₃
2.2 Signaling Role (Second Messenger)
- Muscle contraction: Binds troponin-C → conformational change → actin-myosin interaction
- Neurotransmission: Triggers vesicle fusion (synaptotagmin)
- Blood clotting: Factor IV in cascade; γ-carboxyglutamate (Gla) in prothrombin binds Ca²⁺
2.3 Key Proteins
| Protein | Ca²⁺ Binding Site | Function |
|---|---|---|
| Calmodulin (CaM) | 4 EF-hand motifs | Activates CaM-kinase, MLCK |
| Troponin-C | 2 high-affinity, 2 low-affinity sites | Muscle contraction |
| Calbindin | EF-hand | Intestinal Ca²⁺ absorption |
2.4 Regulation
- Parathyroid hormone (PTH): ↑ bone resorption
- Vitamin D (calcitriol): ↑ intestinal absorption
- Calcitonin: ↓ blood Ca²⁺
3. Magnesium (Mg²⁺)
3.1 Role in Enzymes
- ATP-dependent reactions: Mg²⁺-ATP²⁻ complex (true substrate)
- Kinases: Hexokinase, PFK, creatine kinase
- DNA/RNA polymerases: Stabilizes pyrophosphate leaving group
3.2 Structural Role
- Chlorophyll: Mg²⁺ in porphyrin ring → light absorption
- Ribosomes: Stabilizes rRNA structure
Chlorophyll a: Mg²⁺ coordinated to 4 N atoms of porphyrin; 5th ligand = H₂O or protein His
4. Iron (Fe)
4.1 Oxidation States
- Fe²⁺ (ferrous): Reduced form
- Fe³⁺ (ferric): Oxidized form
4.2 Oxygen Transport & Storage
| Protein | Role | Coordination |
|---|---|---|
| Hemoglobin (Hb) | O₂ transport | Fe²⁺ in heme; 4N (porphyrin) + His (proximal) + O₂/H₂O (distal) |
| Myoglobin (Mb) | O₂ storage | Similar; higher O₂ affinity (P₅₀ = 2.8 torr vs 26 torr for Hb) |
4.3 Electron Transfer
- Cytochromes: Fe³⁺/Fe²⁺ redox (E⁰' ≈ +0.3 V)
- Iron-Sulfur Proteins: [Fe₂S₂], [Fe₃S₄], [Fe₄S₄] clusters
- Rieske center: [2Fe-2S] with His ligation
4.4 Enzymes
| Enzyme | Type | Function |
|---|---|---|
| Catalase | Heme | 2H₂O₂ → 2H₂O + O₂ |
| Cytochrome P450 | Heme | C–H hydroxylation (Fe⁴⁺=O intermediate) |
| Nitrogenase | FeMo-co | N₂ → NH₃ (with Mo) |
5. Copper (Cu)
5.1 Redox States
- Cu⁺ (d¹⁰): Reduced, tetrahedral
- Cu²⁺ (d⁹): Oxidized, square planar/Jahn-Teller distorted
5.2 Types of Cu Centers
| Type | Geometry | Example | Function |
|---|---|---|---|
| Type 1 (Blue) | Trigonal | Plastocyanin | e⁻ transfer (E⁰ ≈ +0.34 V) |
| Type 2 (Normal) | Sq. planar | Cu/Zn-SOD | Catalytic |
| Type 3 (Coupled binuclear) | — | Hemocyanin | O₂ binding |
| CuA | Binuclear | Cyt. c oxidase | e⁻ entry |
| CuB | Monomer | Cyt. c oxidase | O₂ reduction |
5.3 Key Enzymes
- Superoxide dismutase (Cu/Zn-SOD): Cu²⁺ ⇌ Cu⁺ cycle; Zn²⁺ structural
- Cytochrome c oxidase: 4e⁻ reduction of O₂ → H₂O
- Lysyl oxidase: Crosslinks collagen/elastin
6. Zinc (Zn²⁺)
6.1 Properties
- Only Zn²⁺ (d¹⁰): No redox role
- Lewis acid: Activates substrates
- Geometry: Tetrahedral (most), trigonal bipyramidal (few)
6.2 Roles
- Structural: Zinc fingers (Cys₂His₂, Cys₃His)
- Catalytic: Carbonic anhydrase, carboxypeptidase, alcohol dehydrogenase
- Regulatory: Gene expression, insulin storage
6.3 Carbonic Anhydrase (CA)
Active site: Zn²⁺ coordinated to 3 His + H₂O (pKₐ ≈ 7)
Mechanism:
- Zn–OH⁻ + CO₂ → Zn–OCO₂H⁻
- H₂O displaces HCO₃⁻ → Zn–OH₂
- Buffer deprotonates → Zn–OH⁻
kcat: ~10⁶ s⁻¹ (fastest enzyme)
7. Molybdenum (Mo)
7.1 Biological Form
- Molybdopterin (Moco): Mo coordinated to dithiolene of pterin
- Oxidation states: Mo⁶⁺, Mo⁵⁺, Mo⁴⁺
7.2 Mo Enzymes (Molybdoenzymes)
| Enzyme | Cofactor | Reaction |
|---|---|---|
| Xanthine oxidase | Mo + [Fe-S] + FAD | Xanthine → Uric acid |
| Sulfite oxidase | Mo + heme | SO₃²⁻ → SO₄²⁻ |
| Nitrogenase | FeMo-co | N₂ + 8H⁺ + 8e⁻ → 2NH₃ + H₂ |
7.3 FeMo-Cofactor (Nitrogenase)
Structure: [MoFe₇S₉C-homocitrate]; Mo at terminal, interstitial C
Mechanism: Lowe-Thorneley cycle (E₀ to E₈ states); 8e⁻/8H⁺
Summary Table (Exam Revision)
| Metal | Main Role | Key Example | Deficiency |
|---|---|---|---|
| Na⁺ | Nerve impulse | Na⁺/K⁺-ATPase | Hyponatremia |
| K⁺ | Membrane potential | Action potential | Arrhythmia |
| Ca²⁺ | Signaling | Calmodulin | Osteoporosis |
| Mg²⁺ | Enzyme cofactor | Chlorophyll | Hypomagnesemia |
| Fe | O₂ transport, e⁻ transfer | Hemoglobin | Anemia |
| Cu | Redox, O₂ chemistry | Cyt. c oxidase | Menkes disease |
| Zn²⁺ | Catalytic, structural | Carbonic anhydrase | Growth retardation |
| Mo | Oxotransfer, N₂ fixation | Nitrogenase | Rare (esophageal Ca) |
MCQs for Practice
1. The metal ion in chlorophyll is:
- Fe²⁺
- Mg²⁺
- Zn²⁺
- Cu²⁺
2. Which enzyme uses Zn²⁺ to catalyze CO₂ hydration at 10⁶ s⁻¹?
- Catalase
- Carbonic anhydrase
- Alcohol dehydrogenase
- Hexokinase
3. The FeMo-cofactor is present in:
- Hemoglobin
- Nitrogenase
- Cytochrome c
- Myoglobin
4. Ouabain inhibits:
- Ca²⁺-ATPase
- Na⁺/K⁺-ATPase
- H⁺/K⁺-ATPase
- Mg²⁺ transporter
References
- Berg, Tymoczko, Stryer: Biochemistry, 8th Ed.
- Lippard & Berg: Principles of Bioinorganic Chemistry
- Shriver & Atkins: Inorganic Chemistry, 6th Ed.
- CSIR-NET/JRF Previous Year Papers (Bioinorganic Section)