Role of Metal Ions in Biological Systems


Level: Undergraduate (UG) | Postgraduate (PG) | Competitive Exams (CSIR-NET, GATE, IIT-JAM, NEET)

Key Learning Objectives:
  • Understand structural, catalytic, and signaling roles of metal ions
  • Correlate coordination chemistry with biofunction
  • Identify deficiency diseases and therapeutic roles
  • Link metal ions to enzyme active sites and electron transfer

Metal ions are indispensable in biological systems, acting as cofactors, structural components, signaling molecules, and catalysts in enzymatic reactions. Approximately one-third of all proteins require metal ions for proper function. These ions include both essential trace elements (e.g., Fe, Zn, Cu, Mn) and alkali/alkaline earth metals (e.g., Na⁺, K⁺, Mg²⁺, Ca²⁺).


Classification of Metal Ions in Biology

Category Examples Primary Roles
Alkali Metals Na⁺, K⁺ Membrane potential, nerve impulse transmission, osmotic balance
Alkaline Earth Metals Mg²⁺, Ca²⁺ Enzyme activation, muscle contraction, second messengers
Transition Metals Fe, Cu, Zn, Mn, Co, Mo Redox reactions, oxygen transport, enzyme catalysis


1. Sodium (Na⁺) and Potassium (K⁺)

1.1 Biological Role

  • Electrolyte balance: Maintain osmotic pressure, fluid balance
  • Nerve impulse transmission: Action potential via Na⁺/K⁺ gradient
  • Muscle contraction: Depolarization triggers Ca²⁺ release
  • Nutrient uptake: Na⁺-glucose symport, Na⁺/K⁺-ATPase pump

1.2 Na⁺/K⁺-ATPase (Sodium-Potassium Pump)

Structure: α₂β₂ tetramer; α-subunit has 10 TM helices, ATP & ouabain binding sites

Mechanism (Post-Albers Cycle):

  1. E1 (open cytosol): 3 Na⁺ bind → ATP → phospho-E1 → E2-P (open extracellular)
  2. 2 K⁺ bind → dephosphorylation → E1 + 2 K⁺ released inside

Stoichiometry: 3 Na⁺ out : 2 K⁺ in : 1 ATP hydrolyzed

Exam Hotspot: Ouabain/cardiac glycosides inhibit Na⁺/K⁺-ATPase → ↑ intracellular Na⁺ → ↑ Ca²⁺ → stronger heart contraction (digitalis action)

1.3 Deficiency & Excess

IonDeficiencyExcess
Na⁺Hyponatremia, muscle crampsHypertension, edema
K⁺Hypokalemia, arrhythmiaHyperkalemia, cardiac arrest


2. Calcium (Ca²⁺)

2.1 Structural Role

  • Bone & teeth: Hydroxyapatite [Ca₁₀(PO₄)₆(OH)₂]
  • Exoskeletons (crustaceans): CaCO₃

2.2 Signaling Role (Second Messenger)

  • Muscle contraction: Binds troponin-C → conformational change → actin-myosin interaction
  • Neurotransmission: Triggers vesicle fusion (synaptotagmin)
  • Blood clotting: Factor IV in cascade; γ-carboxyglutamate (Gla) in prothrombin binds Ca²⁺

2.3 Key Proteins

ProteinCa²⁺ Binding SiteFunction
Calmodulin (CaM)4 EF-hand motifsActivates CaM-kinase, MLCK
Troponin-C2 high-affinity, 2 low-affinity sitesMuscle contraction
CalbindinEF-handIntestinal Ca²⁺ absorption
MCQ Alert: EF-hand motif = helix-loop-helix; binds Ca²⁺ with pentagonal bipyramidal geometry

2.4 Regulation

  • Parathyroid hormone (PTH): ↑ bone resorption
  • Vitamin D (calcitriol): ↑ intestinal absorption
  • Calcitonin: ↓ blood Ca²⁺


3. Magnesium (Mg²⁺)

3.1 Role in Enzymes

  • ATP-dependent reactions: Mg²⁺-ATP²⁻ complex (true substrate)
  • Kinases: Hexokinase, PFK, creatine kinase
  • DNA/RNA polymerases: Stabilizes pyrophosphate leaving group

3.2 Structural Role

  • Chlorophyll: Mg²⁺ in porphyrin ring → light absorption
  • Ribosomes: Stabilizes rRNA structure

Chlorophyll a: Mg²⁺ coordinated to 4 N atoms of porphyrin; 5th ligand = H₂O or protein His

PG Level: Mg²⁺ reduces ΔG‡ in phosphoryl transfer by charge shielding and orienting ATP γ-phosphate


4. Iron (Fe)

4.1 Oxidation States

  • Fe²⁺ (ferrous): Reduced form
  • Fe³⁺ (ferric): Oxidized form

4.2 Oxygen Transport & Storage

ProteinRoleCoordination
Hemoglobin (Hb)O₂ transportFe²⁺ in heme; 4N (porphyrin) + His (proximal) + O₂/H₂O (distal)
Myoglobin (Mb)O₂ storageSimilar; higher O₂ affinity (P₅₀ = 2.8 torr vs 26 torr for Hb)

4.3 Electron Transfer

  • Cytochromes: Fe³⁺/Fe²⁺ redox (E⁰' ≈ +0.3 V)
  • Iron-Sulfur Proteins: [Fe₂S₂], [Fe₃S₄], [Fe₄S₄] clusters
  • Rieske center: [2Fe-2S] with His ligation

4.4 Enzymes

EnzymeTypeFunction
CatalaseHeme2H₂O₂ → 2H₂O + O₂
Cytochrome P450HemeC–H hydroxylation (Fe⁴⁺=O intermediate)
NitrogenaseFeMo-coN₂ → NH₃ (with Mo)
Cooperativity in Hb: T-state (deoxy) → R-state (oxy); Bohr effect: ↓ pH → ↓ O₂ affinity


5. Copper (Cu)

5.1 Redox States

  • Cu⁺ (d¹⁰): Reduced, tetrahedral
  • Cu²⁺ (d⁹): Oxidized, square planar/Jahn-Teller distorted

5.2 Types of Cu Centers

TypeGeometryExampleFunction
Type 1 (Blue)TrigonalPlastocyanine⁻ transfer (E⁰ ≈ +0.34 V)
Type 2 (Normal)Sq. planarCu/Zn-SODCatalytic
Type 3 (Coupled binuclear)HemocyaninO₂ binding
CuABinuclearCyt. c oxidasee⁻ entry
CuBMonomerCyt. c oxidaseO₂ reduction

5.3 Key Enzymes

  • Superoxide dismutase (Cu/Zn-SOD): Cu²⁺ ⇌ Cu⁺ cycle; Zn²⁺ structural
  • Cytochrome c oxidase: 4e⁻ reduction of O₂ → H₂O
  • Lysyl oxidase: Crosslinks collagen/elastin
Entatic State: Protein constrains Cu geometry for fast redox (plastocyanin)


6. Zinc (Zn²⁺)

6.1 Properties

  • Only Zn²⁺ (d¹⁰): No redox role
  • Lewis acid: Activates substrates
  • Geometry: Tetrahedral (most), trigonal bipyramidal (few)

6.2 Roles

  • Structural: Zinc fingers (Cys₂His₂, Cys₃His)
  • Catalytic: Carbonic anhydrase, carboxypeptidase, alcohol dehydrogenase
  • Regulatory: Gene expression, insulin storage

6.3 Carbonic Anhydrase (CA)

Active site: Zn²⁺ coordinated to 3 His + H₂O (pKₐ ≈ 7)

Mechanism:

  1. Zn–OH⁻ + CO₂ → Zn–OCO₂H⁻
  2. H₂O displaces HCO₃⁻ → Zn–OH₂
  3. Buffer deprotonates → Zn–OH⁻

kcat: ~10⁶ s⁻¹ (fastest enzyme)

NET/GATE: Zn²⁺ in insulin hexamer: 2 Zn²⁺ per hexamer, stabilizes storage form


7. Molybdenum (Mo)

7.1 Biological Form

  • Molybdopterin (Moco): Mo coordinated to dithiolene of pterin
  • Oxidation states: Mo⁶⁺, Mo⁵⁺, Mo⁴⁺

7.2 Mo Enzymes (Molybdoenzymes)

EnzymeCofactorReaction
Xanthine oxidaseMo + [Fe-S] + FADXanthine → Uric acid
Sulfite oxidaseMo + hemeSO₃²⁻ → SO₄²⁻
NitrogenaseFeMo-coN₂ + 8H⁺ + 8e⁻ → 2NH₃ + H₂

7.3 FeMo-Cofactor (Nitrogenase)

Structure: [MoFe₇S₉C-homocitrate]; Mo at terminal, interstitial C

Mechanism: Lowe-Thorneley cycle (E₀ to E₈ states); 8e⁻/8H⁺

PG/Research: Mo is the only 4d metal in biology; deficiency → esophageal cancer (nitrosamine link)


Summary Table (Exam Revision)

MetalMain RoleKey ExampleDeficiency
Na⁺Nerve impulseNa⁺/K⁺-ATPaseHyponatremia
K⁺Membrane potentialAction potentialArrhythmia
Ca²⁺SignalingCalmodulinOsteoporosis
Mg²⁺Enzyme cofactorChlorophyllHypomagnesemia
FeO₂ transport, e⁻ transferHemoglobinAnemia
CuRedox, O₂ chemistryCyt. c oxidaseMenkes disease
Zn²⁺Catalytic, structuralCarbonic anhydraseGrowth retardation
MoOxotransfer, N₂ fixationNitrogenaseRare (esophageal Ca)


MCQs for Practice

1. The metal ion in chlorophyll is:

  1. Fe²⁺
  2. Mg²⁺
  3. Zn²⁺
  4. Cu²⁺

2. Which enzyme uses Zn²⁺ to catalyze CO₂ hydration at 10⁶ s⁻¹?

  1. Catalase
  2. Carbonic anhydrase
  3. Alcohol dehydrogenase
  4. Hexokinase

3. The FeMo-cofactor is present in:

  1. Hemoglobin
  2. Nitrogenase
  3. Cytochrome c
  4. Myoglobin

4. Ouabain inhibits:

  1. Ca²⁺-ATPase
  2. Na⁺/K⁺-ATPase
  3. H⁺/K⁺-ATPase
  4. Mg²⁺ transporter

References

  1. Berg, Tymoczko, Stryer: Biochemistry, 8th Ed.
  2. Lippard & Berg: Principles of Bioinorganic Chemistry
  3. Shriver & Atkins: Inorganic Chemistry, 6th Ed.
  4. CSIR-NET/JRF Previous Year Papers (Bioinorganic Section)
X

Hi, Welcome to Maxbrain Chemistry.
Join Telegram Channel to get latest updates.
Join Now

Daily
Quiz

Admission Alert ⚠️

✦ B.Sc. All Semester


✦ Organic Chemistry for NEET and JEE


✦ GOC-1 and GOC-2 for NEET and JEE


✦ CBSE: 12th Complete Course Annual Exam 2026


✦ Organic Chemistry for CBSE 12th Board Exam 2026


✦ On Demand Topics


Complete Syllabus | PYQs | MCQs | Assignment


Online Class: 25th November 2025


WhatsApp